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Diffusion coefficients of small oligosaccharides within high strength poly(ethylene glycol)/poly(acrylic
acid) interpenetrating network (PEG/PAA IPN) hydrogels were measured by diffusion through hydrogel
slabs. The ability of hindered diffusion models previously presented in the literature to fit the experi-
mental data is examined. A model based solely on effects due to hydrodynamics is compared to a model
based solely on solute obstruction. To examine the effect of polymer volume fraction on the observed
diffusion coefficients, the equilibrium volume fraction of polymer in PEG/PAA IPNs was systematically
varied by changing the initial PEG polymer concentration in hydrogel precursor solutions from 20 to
50 wt./wt.%. To examine the effect of solute radius on the observed diffusion coefficients, solute radii
were varied from 3.3 to 5.1 A by measuring diffusion coefficients of glucose, a monosaccharide; maltose,
a disaccharide; and maltotriose, a trisaccharide. Both the hydrodynamic and obstruction models rely on
scaling relationships to predict diffusion coefficients. The proper scaling relationship for each of the
hindered diffusion models is evaluated based on fits to experimental data. The scaling relationship
employed is found to have a greater significance for the hydrodynamic model than the obstruction
model. Regardless of the scaling relationship employed, the obstruction model provides a better fit to our

experimental data than the hydrodynamic model.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrogels are crosslinked networks of water-soluble polymers
that swell in the presence of water, yet cannot fully dissociate due to
the presence of network crosslinks. Hydrogels have recently gained
considerable attention primarily for their potential use as drug
carriers in drug delivery applications and as cell scaffolds in tissue
engineering applications. Recent efforts have focused on synthe-
sizing hydrogels with various functional groups and molecular level
architectures to create gels that exhibit swelling responses to
a number of environmental factors such as temperature, ionic
strength, and pH [1,2]. Many of these hydrogel designs are intended
to facilitate drug delivery through either polymer degradation to
release drug slowly or through hydrogel swelling responses to
environmental conditions for rapid and targeted drug release.
Although there have been significant efforts to control the release of
small molecule and protein-based drugs from hydrogels through
various mechanisms, the rate at which these solute molecules
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simply diffuse through a hydrogel or polymer network will always
be an important consideration. For any application that requires
drug release or solute transport through a hydrogel, a fundamental
understanding of the important factors governing hindered solute
diffusion through networks of polymer chains is essential.

The poor mechanical strength of most hydrogels severely limits
their use to applications where little or no mechanical strength is
required. Recently, Gong et al. demonstrated that hydrogels
prepared from interpenetrating polymer networks (IPNs) have
dramatically enhanced mechanical properties compared to single
networks of each component [3]. Hydrogels with enhanced
mechanical strength open the door to a wider variety of applica-
tions that require robust mechanical properties, such as synthetic
substitutes to load-bearing soft tissues. Our research group is
currently developing IPN hydrogels consisting of a poly(ethylene
glycol) (PEG) network interpenetrated with a poly(acrylic acid)
(PAA) network for use in artificial cornea, corneal inlay, and corneal
onlay applications [4-7]. The optical clarity and high mechanical
strength of these hydrogels makes them ideal materials for such
ophthalmic applications. In addition to optical clarity and
mechanical strength, inter-corneal implants must also have a high
rate of small molecule nutrient diffusion in order to sustain a viable
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layer of epithelial cells on the outermost surface of the eye. In order
to tune a hydrogel’s transport properties to have a sufficiently high
diffusivity, an understanding of the critical parameters governing
solute diffusion in hydrogels and how these parameters influence
diffusion is necessary.

In this study, the diffusivities of a series of oligosaccharides in
PEG/PAA IPN hydrogels are compared to the diffusivities predicted
by hindered diffusion models previously reported in the literature
to determine if these models are applicable to our system. We have
measured the diffusion rates of glucose, a monosaccharide;
maltose, a disaccharide; and maltotriose, a trisaccharide, through
PEG/PAA IPN hydrogels that have varying equilibrium volume
fractions of polymer. The polymer content was varied by changing
the initial PEG polymer concentration in hydrogel precursor solu-
tions from 20 to 50 wt./wt.%. Glucose diffusion is a point of focus
because glucose is a critical cell nutrient required by epithelial cells
and, therefore, its diffusion rate through the hydrogel is directly
relevant to ophthalmic applications. Maltose and maltotriose were
examined in order to increase the diffusing solute size without
significantly altering the chemistry of the solute.

How the observed diffusion coefficient of a solute within
a polymer solution or network changes with polymer volume
fraction has been the subject of many previous investigations and
has resulted in a number of hindered diffusion models [8,9]. The
applicability of two of these hindered diffusion models to our
system is evaluated based on goodness-of-fit to experimental data.
One model describes solute diffusion in polymer solutions and
networks solely in terms of hydrodynamics, while the second model
describes solute diffusion in polymer solutions and networks solely
in terms of solute obstruction effects. These are described in the
next section.

2. Background
2.1. Models for hindered diffusion in hydrogels

A number of hindered diffusion models have been proposed to
explain the observed decrease in solute diffusivity in the presence
of polymer chains compared to that in pure solvent. Reviews by
Muhr and Blanshard and more recently by Amsden provide
a detailed summary of various diffusion models presented in the
literature [8,9]. In these hindered diffusion models, the observed
diffusivity of a solute through a polymer gel, Dg, is compared to the
diffusivity of a solute in pure solvent, Dg. A common feature of all
hindered diffusion models is that the normalized diffusion coeffi-
cient, Dg/Do, decreases with either increasing polymer volume
fraction, ¢, or increasing solute radius, rs. Exactly how and why Dg/
Do changes with respect to the polymer volume fraction, ¢, and the
solute radius, rs, is a source of contention among various hindered
diffusion models proposed in the literature.

Hindered solute diffusion through polymer solutions and
networks has been variously modeled in terms of a reduction of free
volume available to the solute, increased hydrodynamic drag
experienced by the solute due to the presence of polymer chains, or
polymer chains acting as physical obstructions to diffusion or
effectively increasing the diffusion path length. The majority of the
models for diffusion in polymer solutions and networks are derived
based on one of these three phenomena or combinations thereof.
The free volume theory of diffusion is based on the notion that
solute diffusion in a pure liquid occurs by a solute jumping into voids
within the liquid medium arising from molecular rearrangements.
Models based on free volume theory have been less successful in the
past, and the free volume theory of diffusion is a point of contro-
versy for diffusion even in pure liquids [ 10,11]. For these reasons, we
have chosen to focus on hindered diffusion models that are based on

the more widely established hydrodynamic and obstruction
phenomena to describe solute diffusion in polymer networks.

In this work, we present our diffusion data and compare it to
two representative hindered diffusion models. The first model,
originally developed by Cukier, is based on hydrodynamic consid-
erations for diffusion in polymer networks and uses scaling rela-
tionships to relate the hydrodynamic screening length, «~!, to the
volume fraction of polymer in the hydrogel, ¢ [12]. The second
model was developed more recently by Amsden and is based on
obstruction considerations [13]. The Amsden model also uses
scaling relationships, but in this case the size of the spaces between
polymer chains, &, is related to the volume fraction of polymer in
the hydrogel, ¢. The following provides a brief background on the
two models.

2.1.1. Cukier hydrodynamic model

The origins of hydrodynamic models for hindered diffusion can
be traced to papers from Debye/Beuche and a similar prior paper by
Brinkman [14,15]. These papers describe the hydrodynamics of
polymer solutions in terms of an effective medium model.
Following the work of Debye/Beuche and Brinkman, Cukier
proposed a model for hindered diffusion based solely on these
hydrodynamic considerations [12]. Cukier’s model uses a modified
version of the Navier-Stokes equation to describe a polymer solu-
tion or network as a new “fluid” whose velocity, V(r), and pressure,
P(r), satisfy equation (1). Equation (1) is the standard Navier-Stokes
equation for fluid flow with an additional x*V(r) term. This term
describes the hydrodynamic friction, which results from polymer
chains being suspended in the solution, where «~! is the hydro-
dynamic screening length of this added friction. At a distance
farther than this screening length, the hydrodynamic frictional
force of a polymer chain will be effectively “screened out”. Scaling
laws are used to determine how the screening length changes as
a function of polymer concentration in different polymer concen-
tration regimes.

uv2V(r) — k*V(r) — VP(r) = F(r) (1)

To determine the hydrodynamic friction experienced by a spherical
solute of radius, rs, the usual Stokes law derivation is performed
using equation (1) rather than the standard Navier-Stokes equa-
tion. The friction experienced by a solute in the polymer network,
fe, divided by the friction experienced by the solute in pure solvent,
fo, is given in equation (2). Since only hydrodynamic considerations
are taken into account, the relationship between diffusion coeffi-
cients can be given as equation (3).

% = exp(—Krs) (2)
D
D—i = exp(—«Ts) (3)

The Cukier model can then be expressed in terms of polymer
volume fraction by relating the hydrodynamic screening length,
k1, to the polymer volume fraction, ¢. It has been shown that there
are at least three different scaling regimes with varying scaling
relationships between the hydrodynamic screening length, x !, and
the polymer volume fraction, ¢. In order from high polymer volume
fraction to low polymer volume fraction, the scaling relationships
are as follows: k' ~ ¢~ 1, k' ~ 912 and k! ~ ¢—3/* [16]. These
scaling relationships can be used to rewrite equation (3) as equa-
tion (4) with a scaling exponent, », and a proportionality constant, k.
A detailed derivation of the Cukier hindered diffusion model can be
found in Cukier’s original paper [12].
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g—i = exp( - krsqf”) (4)

2.1.2. Amsden obstruction model

Hindered diffusion models based on obstruction theories
assume that the polymer chains in solution or within a network
create fixed pores or openings within which the solute can diffuse.
The polymer chains themselves act as obstructions to diffusion,
effectively increasing the solute diffusion path length. Assump-
tions of the obstruction model are that the size, shape, location,
and number of pores or openings within the polymer gel remain
more or less fixed on the timescale of solute diffusion. A recent
study by Zhang and Amsden showed that for polymer solutions,
the polymer chains can be considered immobile over the time-
frame of solute diffusion [17]. Therefore, it is reasonable to expect
the same for polymer gels wherein polymer chain movement is
more restricted.

The Amsden obstruction model has been developed in more
recent years in comparison to the older Cukier hydrodynamic model
but is based on work originally performed by Ogston et al. [13,18,19].
The Ogston model is a stochastic diffusion model wherein diffusion
is considered to be the result of solute particles undergoing a series
of statistically independent unit displacements. When a solute
diffuses through a network of polymer chains, the solute can either
undergo a unit step displacement or a collision with a polymer chain
that results in no displacement. The probability of a solute
encountering an opening in the network is expressed in terms of
a distribution function, g(r), which describes the distribution of
spaces between polymer chains. In the Ogston model, the distri-
bution function and sizes of the spaces between polymer chains are
determined by modeling the chains as a random array of rigid
cylindrical fibers with finite radii equal to r¢[18]. Equation (5) shows
the distribution function, g(r), for the distribution of spherical
spaces in a random array of rigid fibers, where R is the mean radius
of the distribution. Equation (6) shows that the normalized diffusion
coefficient can then be expressed as the probability that a solute will
encounter spaces large enough to diffuse through, where r* is the
critical radius required for solute diffusion. Since this derivation
models polymer chains as rigid cylinders, it cannot be expected to
apply for flexible polymer hydrogels.

g0 - smeo(-5(7)) (5)

o - [ gar (6)

Although the Amsden model still uses the distribution of spaces
derived by Ogston, the model is considered to be applicable to
flexible chain systems because instead of using the size of the
spaces between rigid cylindrical fibers, scaling relationships for
flexible polymers are used to describe the size of the spaces
between chains. The final form of the model derived by Amsden is
shown in equation (7), where v is a scaling exponent, k is a pro-
portionality constant, rs is the size of the solute, and rf is the
effective radius of the polymer chains. Various versions of the
Amsden model include additional parameters such as the interac-
tion parameter, x, and the characteristic ratio, Gy, to further refine
the model for a given polymer system. Since these additional
parameters end up getting absorbed into an undefined pro-
portionality constant, k, we have presented the Amsden model in
terms of this constant, which is used as a fitting parameter. A more
detailed derivation of this model can be found in the original paper
by Amsden [13].

2
Dg s +If
D—Oexp<—w<m (7)

The value of the exponent, », depends on the scaling relationship
between the spacing between polymer chains, &, and the polymer
volume fraction, ¢. The proper scaling relationships were deter-
mined by Amsden by assuming that the polymer network is similar
to a polymer solution of the same concentration. In this case, well-
known scaling relationships for polymer solutions can be applied.
These scaling relationships yield £ ~ ¢~ for the theta solvent
regime, where polymer chains are considered to have ideal
conformations and three-body monomer excluded volume inter-
actions. For the good solvent regime, polymer chains have swollen
chain conformations with two-body excluded volume effects and
the scaling relationship £ ~ ¢—3/ applies. In between the good
solvent regime and the theta solvent regime, a marginal solvent
regime exists where polymer chains are considered to have ideal
chain conformations and two-body interactions. In the marginal
solvent regime ¢ ~ ¢~ /2 applies [16,20,21].

For polyelectrolyte networks such as those based on PAA, an
alternative method to determine the proper scaling relationship
was employed by Amsden [22]. For ionic networks with a low
concentration of counterions present in solution, a force balance
between osmotic swelling forces and elastic retractive forces of the
polymer chains performed by Skouri et al. was used [23]. This
yielded the scaling relationship, £ ~ ¢~ "2, which is the same rela-
tionship as for the marginal solvent regime in polymer solutions. For
ionic networks with a large concentration of counterions, Amsden
reasoned that the electrostatic shielding from the high concentra-
tion of counterions would allow the polyelectrolyte network to be
treated as a neutral polymer network. In this case, the scaling
relationship for a polymer in a good solvent, £ ~ ¢~3/4, applies.

The scaling relationships in the Cukier hydrodynamic model are
associated with the hydrodynamic screening length, «~, which is
sometimes referred to as simply the dynamic screening length.
Conversely, the scaling relationships in the Amsden obstruction
model are associated with the average spacing between polymer
chains, £, which is sometimes referred to as the excluded volume or
static screening length. Although the dynamic and static screening
lengths represent physically different phenomena, both screening
lengths are expected to follow the same scaling laws [16,24]. This
means that the Cukier and Amsden models use the same scaling
exponents to relate screening lengths to the polymer volume
fraction. In the Cukier model, only hydrodynamic effects are
included in the scaling relationships, while in the Amsden model,
only obstruction effects are present in the scaling relationships.

3. Materials and methods
3.1. Chemicals

2-Hydroxy-2-methyl-propiophenone, acrylic acid, acryloyl
chloride, glucose, maltose, maltotriose, poly(ethylene glycol) (PEG)
(M = 4600 Da), and triethylene glycol dimethacrylate, were
purchased from Aldrich Chemical Co. (Milwaukee, WI) and used as-
received. Anhydrous tetrahydrofuran (THF) was purchased from
Fisher Scientific (Pittsburg, PA). Phosphate buffered saline pH 7.4
(PBS pH 7.4) was purchased from Invitrogen (Carlsbad, CA).

3.2. Hydrogel preparation

IPN hydrogels consisting of a PEG network interpenetrated with
a PAA network were prepared as described previously [4]. Briefly,
PEG/PAA IPN hydrogels were prepared with a two-step, sequential,
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UV-initiated free radical polymerization. Poly(ethylene glycol)-diol
terminated macromonomer, M, = 4600 Da, was dissolved in
anhydrous THF at 50 °C, a molar excess of acryloyl chloride was
added, and the reaction mixture was then allowed to react for 5 h
under a nitrogen atmosphere. The poly(ethylene glycol)-diacrylate
(PEG-DA) product was then purified by recrystallization twice in
THF at 4°C. To create a single network PEG hydrogel, PEG-DA
macromonomer (M, = 4600) was dissolved in deionized water at
20, 30, 40, and 50 wt./wt.% concentrations. The photoinitiator, 2-
hydroxy-2-methyl-propiophenone, was then added to the PEG-DA
solution at 1 wt.% with respect to the macromonomer. Finally, the
PEG-DA macromonomer precursor solution was injected between
two glass slides separated by a 250 um spacer and exposed to a UV
light source, 365 nm at 10 mW/cm?, for 5 min. (UV chamber model
ELC-500, Electro-lite Corporation, Danbury, CT). Upon exposure to
UV light, the acrylate groups reacted to create an end-linked PEG
network.

To create a PEG/PAA IPN hydrogel, the PEG single network
hydrogel was soaked in a large excess of a 50 v.% (7.3 M) acrylic acid
monomer solution with 1% v./v. 2-hydroxy-2-methyl-propiophe-
none photoinitiator (0.45 mol.% with respect to acrylic acid
monomer) and 1% v./v. triethylene glycol dimethacrylate cross-
linker (0.26 mol.% with respect to acrylic acid monomer). The PEG
hydrogel was allowed to soak in the acrylic acid solution overnight
and was then placed back between glass slides separated by spacers
and exposed to UV light for 5 min. After the second polymerization
step, the PEG/PAA IPN hydrogel was washed in phosphate buffered
saline (PBS) (pH 7.4, ionic strength 0.15 M) until the pH remained
constant. PBS pH 7.4 is used to mimic physiological pH and ionic
strength conditions.

3.3. Hydrogel equilibrium volume fraction determination

To determine the mass fraction of PEG, PAA, and total polymer in
the equilibrium swollen hydrogels, 12 mm discs were cut out after
the first polymerization step. The swollen masses of these discs
were recorded before and after each polymerization step and after
equilibrium swelling in PBS buffer at pH 7.4. After each polymeri-
zation step, the weight of hydrogel discs after drying overnight in
a vacuum desiccator was also recorded to obtain the polymer mass
in the hydrogels. The mass fractions of PEG, PAA, and total polymer
were then converted into volume fractions using 0.92 cm?/g as the
specific volume of PEG and 0.82 cm>/g as the specific volume of PAA
[25]. There were negligible deviations in equilibrium volume frac-
tion between samples of the same composition. Converting mass
fractions to volume fractions were seen as a more accurate method
than attempting to measure volumes of very small dried hydrogel
samples directly.

3.4. Diffusion coefficient determination

Diffusion coefficients of glucose, maltose, and maltotriose were
obtained via solute diffusion through thin hydrogel discs (diame-
ter=12 mm, thickness=0.68-0.77 mm). The hydrogels are
considered to be thin in relation to their radial dimensions such
that a one-dimensional diffusion model is considered accurate.
Hydrogels of roughly the same thickness were used. By so doing,
any possible boundary layer effects present will affect each sample
to the same degree and the relative differences between diffusion
coefficients obtained for different sample compositions should be
valid.

To perform the diffusion coefficient measurements, the hydrogel
discs were placed in modified blind well chambers (model BW200S,
NeuroProbe, Gaithersburg, MD). The blind well chambers consist of
an upper (receptor cell) and a lower (donor cell) chamber, each

200 pL in volume. Fig. 1 shows a diagram of the chambers used for
diffusion studies. The chambers have a 4.7 mm diameter opening,
yielding a 17.35 mm? area available for solute diffusion through
hydrogel samples. One face of the hydrogel is kept at a constant
solute concentration by modifying the lower chamber to allow
a continuous flow of 75 pL/min. of a 56 mM solute concentration in
PBS buffer pH 7.4. This concentration is considered to be high relative
to the concentration on the opposite side of the hydrogel face during
data collection, yet negligible compared to the total solute concen-
tration in the PBS buffer such that there is a negligible osmotic
pressure difference between the two faces of the hydrogel. Any
possible leakage between upper and lower chambers could easily be
observed by a change in solution volume in the upper receptor cell.
The upper receptor chamber was stirred with a magnetic stir bar
(volume = 0.018 cm®) to maintain a uniform solute concentration.
The volume of the stir bar was taken into account when using the
volume of the upper receptor chamber to calculate the diffusion
coefficient. The concentration of solute in the upper receptor
chamber was measured with 0.3 uL sample volume per measure-
ment at thirty-minute intervals until six data points were obtained.
The small volume for sample measurement is considered negligible
compared to the total volume of the receptor chamber. The data
points collected yielded a linear relationship between concentration
and time during the timeframe of data collection. Fig. 2 shows
a typical linear relationship observed between solute concentration
and time. The slope of a linear fit to this data was then used to
determine the diffusion coefficient, as described below.

To determine the diffusion coefficient, the one-dimensional
diffusion equation (Fick’s second law) is solved in Cartesian coor-
dinates with the initial condition C(t=0)=0 and boundary
conditions C((x=0)=C; =56 mM and C(x =L) = C; = 0, where C; is
the concentration of solute in the lower (donor) chamber and C; is
the concentration of solute in the upper receptor chamber.
Although C, obviously increases with time, Cy is always signifi-
cantly higher than C; when data points are collected, such that the
value of C, is approximated as zero. This assumption is justified by
the fact that the solute concentration vs. time plots (Fig. 2) are
linear over the range of data point collection. Once the value of C2
approaches that of C1, this assumption breaks down and the
concentration vs. time plots will no longer be linear. The diffusion
coefficient, Dg, of the solute in the hydrogel can be calculated using
the slope of the linear portion of the concentration vs. time plot and
the steady-state solution to the one-dimensional diffusion equation
given as equation (8), where Q; is the total amount of solute that has
passed through the hydrogel thickness, L, at time t [26]. Diffusion
measurements for each hydrogel composition and solute pair were
repeated four times to obtain replicate data. The diffusion

sample

(0.3 WL)

receptor
(0.2 mL)

stir bar
(V=0.018 ml)

hydrogel

/ outlet
1=0.68-0.77 mm (75 ML/min.)

A=17 mm*
donor
inlet (0.2mL)
(C,=56 mM)

Fig. 1. Diagram of modified blind well chambers used for diffusion measurements. A
hydrogel sample separates the lower donor chamber from the upper receptor chamber.
A 75 pL/min flow of solute through the bottom chamber maintains a constant 56 mM
solute concentration at the bottom face of the hydrogel. Sample aliquots 0.3 pL in
volume are taken from the receptor chamber to obtain a solute concentration vs. time
plot.
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Fig. 2. A representative concentration vs. time curve for glucose diffusing through PEG
M, = 4600 Da, 50 wt.% initial PEG content/PAA IPN hydrogel. A linear relationship
between concentration and time is observed over the time period of data collection.

coefficients for all four trials were averaged and are reported as
averages with standard deviations as the error bars.

_ DgCy 12
Q= <t6Dg> (8)

3.5. Solute concentration measurement

Concentrations of glucose, maltose, and maltotriose were
measured with a FreeStyle over-the-counter blood glucose meter
manufactured by Abbott (Abbott Park, Il). The FreeStyle blood
glucose meter uses an electrochemical method to determine the
concentration of glucose in a sample. Briefly, glucose is oxidized to
gluconolactone via glucose dehydrogenase enzymes embedded in
test strips. The device uses a coulometric method for determining
glucose concentrations, meaning that all of the glucose in the
sample is reacted and the total charge generated during this reac-
tion is used to determine the glucose concentration. The FreeStyle
glucose meter is able to measure glucose concentrations ranging
from 1.1 to 27.8 mM (+/—0.1-0.8 mM) with sample volumes as
small as 0.3 pL [27]. The glucose dehydrogenase enzyme in the test
strips is also able to react with disaccharides and trisaccharides
with a(1 — 4) linkages. Therefore, the FreeStyle glucose meter is
also capable of reliably determining the concentrations of maltose
and maltotriose in addition to glucose, as demonstrated in cali-
bration curves for each solute. Fig. 3 shows the calibration curves
that demonstrate the ability of the FreeStyle glucose meter to
measure glucose, maltose, and maltotriose concentrations.

3.6. Partition coefficient determination

Partition coefficients for each solute were determined by adding
a known concentration of solute to a known volume of hydrogel
and buffer. The concentrations of the solute in solution were
measured after the solute was allowed to reach an equilibrium
between the hydrogel and the solution phases (one week). Data
were collected in triplicate for each hydrogel composition and
solute pair. Equation (9) was derived from a mass balance between
the hydrogel and solution phases and was used to calculate parti-
tion coefficients. Here Cp is the initial solute concentration in

T T T T T T T T T

25 1 B
s
é-, 20 B
c
2
=
©
s 15 B
c
®
o
c
]
< 104 B
g
é = Glucose
] A
S 5 Maltose |

® Maltotriose
Expected Values
0 T T T T T T T T T
0.0 5.0 10.0 15.0 20.0 25.0

Actual Concentration (mM)

Fig. 3. Calibration curve showing the solute concentrations measured by the Freestyle
glucose meter vs. the actual solute concentrations. The Freestyle glucose meter is able
to accurately measure the concentration of glucose, maltose, and maltotriose.

solution, Ce is the solute concentration in solution at equilibrium, Vs
is the volume of the solution, and Vj is the volume of the hydrogel.
In all cases, the partition coefficients were determined to be
1.0+ 0.3. Since all of the partition coefficients were found to be
near unity within experimental scatter, the partition coefficients
were taken to be precisely unity. This implies that the observed
permeability (Dg x Kq) is equivalent to the observed diffusivity (Dg).

_ VS(CO - Ce)

3.7. Fitting to hindered diffusion models

For both the Cukier and Amsden models, the decrease in diffu-
sion rate of a solute within a hydrogel compared to that in pure
solvent is evaluated based on two key parameters: the equilibrium
volume fraction of polymer, ¢, and the hydrodynamic radius of the
solute, rs. To evaluate the effect of the polymer volume fraction on
the diffusion rate of solutes in PEG/PAA IPN hydrogels, the equi-
librium polymer fraction was varied systematically by varying the
initial weight percent of PEG in hydrogel precursor solutions from
20 to 50 wt./wt.%. Precursor solutions with a higher weight percent
PEG could not be prepared due to poor solubility of the polymer,
while lower weight percent precursor solutions did not completely
gel upon UV exposure, probably due to a high rate of intrachain
cyclization. For these reasons, hydrogels with significantly higher
or lower volume fraction of polymer could not be obtained without
changing additional parameters in the system. In this study, we
chose to vary only one parameter in the PEG/PAA IPN hydrogel
system in order to avoid adding additional complications. To eval-
uate the effect of solute radius on the solute diffusion rate observed
in PEG/PAA IPN hydrogels, diffusion experiments were carried out
for glucose, a monosaccharide; maltose, a disaccharide; and mal-
totriose, a trisaccharide. This series provides a controlled method to
evaluate the effect of increased solute size while maintaining
a similar solute chemistry and allowing the same detection method
to be used for each solute.

Nonlinear curve fitting of hindered diffusion models to experi-
mental diffusion data was performed via a Levenburg-Marquardt
nonlinear regression algorithm using OriginLab software (OriginLab,
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Northampton, MA). The validity of the hindered diffusion model was
assessed in terms of the values of the fitting parameters returned as
well as the values of the adjusted coefficients of determination, R% To
assess the ability of the hydrodynamic-based Cukier model and the
obstruction-based Amsden model to predict hindered diffusion
coefficients in PEG/PAA IPN hydrogels, the models were fit to both
normalized diffusion coefficient, Dg/Dp, vs. polymer volume fraction,
¢, data and normalized diffusion coefficient, Dg/Dy, vs. solute radius,
15, data. In this way, the ability of the model to predict both the
influence of the polymer volume fraction in the hydrogel and the
solute radius may be evaluated.

Each of the models examined in this work contains the radius of
the solute diffusing through the hydrogel as a key parameter. The
hydrodynamic radii of glucose, maltose, and maltotriose were
obtained using the Stokes—Einstein relationship (equation (10)) for
equivalent spheres with the same diffusion coefficients as reported
for the solutes in pure solvent. In the Stokes—Einstein relationship,
the diffusion coefficient is expressed in terms of the thermal energy
of the system, kgT, and the hydrodynamic drag, v, acting on a sphere
of radius, r5, which is expressed in terms of solvent viscosity, 1. The
diffusion coefficients for each solute in water at 25 °C, Dy, were
obtained from values reported in the literature [28]. The diffusion
coefficient reported for raffinose, another trisaccharide, was used in
place of maltotriose.

—kLT _ kBT

Do === Grnrs

(10)

In addition to the radius of the diffusing solute, the Amsden model
also contains the radius of the polymer chains in the network, ry, as
a parameter that must be either estimated or used as a fitting
parameter. To maintain the same number of fitting parameters for
each model, we have estimated the radius of the polymer chains by
weight averaging values obtained for both PAA and PEG based on
the relative proportions of PAA and PEG in the IPN hydrogels.
According to Tayler et al. and references therein, PAA can be
modeled as a cylindrical worm-like chain with radius 3.0 A, so this
value was taken as the chain radius for PAA [29]. For the chain
radius of PEG, ChemDraw software (CambridgeSoft, Cambridge,
MA) was used to determine the radius of a Kuhn length segment of
PEG, which consists of two monomer units. The radius of the PEG
segment was determined to be 2.4 A. The chain radii for the two
polymers were weight averaged based on the volumetric ratios of
PAA:PEG in the IPN hydrogels. Although the ratio of PAA to PEG in
the IPN hydrogels varied between samples, using either the highest
ratio of PAA:PEG (9.167:1) or the lowest ratio of PAA:PEG (5.117:1)
yielded the same weighted average chain radius within 0.1 A. To
account for the hydration sheath surrounding the polymer chains,
the diameter of one water molecule, taken as 2.8 A, was added to
the weighed average polymer chain radius, yielding a chain radius
of 5.7 A. Since the chain radii for both polymers were determined to
be very close, the obvious simplification of weight averaging the
two radii is not expected to have a large influence on the model.

4. Results and discussion
4.1. Hydrogel equilibrium swelling

The equilibrium volume fraction of polymer in PEG/PAA IPN
hydrogels swollen in PBS buffer at pH 7.4 was varied by changing
the PEG macromonomer concentration in the hydrogel precursor
solutions. Hydrogels with PEG macromonomer M, = 4600 g/mol
were prepared with varying initial macromonomer concentrations
ranging from 20 to 50 wt./wt.%. Decreasing the initial concentration
of PEG decreased the overall equilibrium volume fraction of

Table 1

Volume fractions of PEG, PAA, and total polymer content were obtained by taking
the mass of hydrogels in the equilibrium swollen and dried states and converting to
volume using vs, = 0.92 cm?/g for PEG and vy, = 0.82 cm’[g for PAA [25].

Hydrogel composition Vol. frac Vol. frac Vol. ratio Mol. ratio Vol. frac

PAA PEG PAA:PEG AAJEO polymer
PEG4.6K-50%PAA 0.146 0.028 5177 3.550 0.174
PEG4.6K-40%PAA 0.128 0.021 6.004 4.117 0.150
PEG4.6K-30%PAA 0.109 0.018 6.118 4.195 0.075
PEG4.6K-20%PAA 0.068 0.007 9.167 6.285 0.075

polymer in PEG/PAA IPN hydrogels from a volume fraction of 0.174
to 0.075. Decreasing the initial concentration of PEG also had the
effect of changing the volumetric ratio of PAA:PEG in the final IPN
hydrogel from 5.177:1 to 9.167:1. The equilibrium volume fractions
of PEG, PAA, and total polymer volume fractions of all hydrogels
used in this study are summarized in Table 1.

4.2. Fitting to hindered diffusion models

A key parameter in the Cukier model is the relationship between
the hydrodynamic screening length, k!, and the polymer volume
fraction, ¢. It has been proposed that the hydrodynamic screening
length has at least three different scaling regimes where there are
different scaling exponents relating this screening length to the
polymer volume fraction [16]. We chose to fit our data to versions of
the Cukier model with three of the proposed scaling relationships
to determine which scaling relationship provides the most appro-
priate fit. A plot of Dg/Dg vs. ¢ data fit to the Cukier model with the
hydrodynamic screening length scaling as either « !~ ¢l
/4, or k1~ (071/2 is shown in Fig. 4a. The Amsden
obstruction model also has several versions with varying scaling
relationships between parameters. In this case, how the spacing
between polymer chains or the static screening length, £, scales
with the polymer volume fraction, ¢, is the key parameter. A plot of
Dg/Dg vs. ¢ data fit to the Amsden model with the static screening
length scaling as either as either £ ~ ¢!, ~ ¢ 34 or £ ~ o2 is
shown in Fig. 4b.

Fig. 5 shows a comparison plot of the best fits for the Cukier
model (k! ~ ¢~"2) and the Amsden model (£ ~ ¢~!) to both Dg/Dg
vs. ¢ and Dg/Dg vs. 15 data. Fig. 5a shows a comparison between the
two models for Dg/Dg vs. ¢ data, while Fig. 5b shows a comparison
between the two models for Dg/Dg vs. 15 data. Since the Dg/Dg vs. Ts
data are not affected by the different scaling relationships
employed, only the results of the best scaling relationships
(obtained from fits to Dg/Dg vs. ¢ data) are shown.

Table 2 contains a summary of the fitting parameters obtained
for each model and the R? values for each fit to the data. The
standard errors for the proportionality constants, k, obtained from
model fits to the data have been included. If the proportionality
constant, k, is a meaningful parameter for a given polymer/solute
combination, then the values returned for this fitting constant
should remain roughly the same for fitting the model to either Dg/
Do vs. ¢ or Dg/Dg vs. 15 data.

k1~ g3

4.3. Analysis of modeling fitting

PEG/PAA IPN hydrogels are distinguished from most other
hydrogels in that they have both a low volume fraction of polymer
(<0.2) and high mechanical strength (initial modulus E; = 2-
10 MPa) [4,5]. PEG and PAA chains in solution have been previously
shown to form interpolymer hydrogen bonding complexes at low
pH [30-32]. At high pH, the hydrogen bonding complex between
PEG and PAA reversibly disassociates as the carboxylic acid groups
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Fig. 4. (a) Normalized diffusion coefficient, Dg/Do, vs. polymer volume fraction, ¢, fit to the Cukier hydrodynamic model. Varying scaling exponents relating the hydrodynamic
screening length, «, to the polymer volume fraction, ¢, were employed. (b) Normalized diffusion coefficient, Dg/Dy, vs. polymer volume fraction, g, fit to the Amsden obstruction
model. Varying scaling exponents relating the spacing between polymer chains, £, to the polymer volume fraction were employed. All data points are average values with error bars

representing one standard deviation in experimental data.

along the PAA chains become deprotonated. Acrylic acid has also
been shown to template polymerize along PEG chains in solution
when polymerized at low pH [33]. It is currently unclear what effect
hydrogen bonding during formation of PEG/PAA IPNs at low pH has
on the structure when the hydrogel is swollen in buffer pH 7.4,
a condition in which PAA is fully deprotonated. Given the likely
hydrogen bonding interaction between these two polymers and the
fact that PEG/PAA IPNs exhibit a dramatic enhancement in
mechanical properties compared to most single network hydrogels,
the structure of these IPN hydrogels on the molecular level could be
expected to be more complex than most single network hydrogels
widely used in solute diffusion studies. One of the objectives of this
work to determine if small molecule diffusion through PEG/PAA IPN
hydrogels can be accurately fit by hindered diffusion models
previously described, and if so, which models provide the best fit to
the data.

For the Cukier hydrodynamic model, three different versions
were fit to the data with the hydrodynamic screening length scaling
with the polymer volume fraction as either k' ~ ¢~ 1, k™1 ~ =3/,
or k' ~ ¢~ 12, From analysis of the Cukier model fits to experi-
mental data in Fig. 4 as well as the R? values and differences in k
values reported in Table 2, it is clear that the hydrodynamic
screening length scaling as k! ~ (p‘”z provides a much better fit to
the data than the other scaling relationships. For k! ~ ¢~ 1/
scaling, R? = 0.71 for fits to Dg/Dg vs. ¢ data and R% = 0.66 for fits to
Dg/Dg vs. 15 data. As discussed in the original paper by Cukier,

a T T T T T T T T T T T
0.34 ] —— Amsden model, rg=3.3 A, &~¢™"? ]
0.32 1 { - Amsden model, r=3.3 A, -0 ]
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0.20 7

T T T T T T T T T T T T
0.06 0.08 0.10 0.12 0.14 0.16 0.18
Polymer Volume Fraction, ¢

previous studies on solute sedimentation and diffusion in polymer
solutions have shown that normalized diffusion coefficient vs.
polymer volume fraction, Dg/Dg vs. ¢, data can be accurately fit to
a stretched exponential of the polymer volume fraction to the one-
half power [12,34]. The Cukier model has this form if k' ~ qf”z
scaling is employed. Thus, our data are consistent with previous
results that show this form of the Cukier model best describes
hindered diffusion in polymer solutions and networks, although
the fit is only moderately successful.

In a similar approach, three different versions of the Amsden
model were fit to our data. In this case, the scaling relationships
used to relate static screening length to the polymer volume frac-
tion are £ ~ ¢, £~ (p’3/4. and ¢ ~ (p’l/z. The data presented in
Fig. 4 and Table 2 indicate that calculations of the Amsden model
with the scaling relationships ¢ ~ ¢~ and ¢ ~ ¢~ 3/ fit very well to
Dg/Do vs. ¢ data, with R> = 0.98 and R? = 0.96, respectively. Fitting
to the scaling relationship & ~ qf”z provides a poorer fit to the data
with an R?=0.78. This fit is notably worse than the fits obtained
with either £ ~ ¢~ or ¢ ~ 973/ scaling, but is still better than the
best fit obtained with the Cukier model. The Amsden model was
also able to fit Dg/Dy vs. 15 data better than the Cukier model with
R%=0.89 as opposed to R? = 0.66 for the Cukier model. For all of the
Amsden model fits, the proportionality constants or k values
returned for fits to both Dg/Dg vs. ¢ and Dg/Dg vs. 15 data fall within
the standard errors returned by the fitting algorithm. This means
that the values for the proportionality constants are consistent
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Fig. 5. (a) Comparison between the best fit obtained with the Amsden model and the best fit obtained with the Cukier model for normalized diffusion coefficient, Dg/D, vs. polymer
volume fraction, ¢. (b) Comparison between the best fit obtained with the Amsden model and the best fit obtained with the Cukier model for normalized diffusion coefficient, Dg/Do,

vs. solute radius, rs, data. In each plot error bars represent one standard deviation.
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Table 2
Summary of adjusted coefficients of determination, R?, and proportionality
constants, k, used as fitting parameters for fits to the Cukier and Amsden obstruction
models.

Volume fraction dependence Solute radius dependence

Model  Scaling k R? Model  Scaling k R?

Amsden 1.0 0.27 +£0.01 0.98 Amsden 1.0 0.31+0.03 0.89
Amsden 0.75 0.47 +£0.02 0.96 Amsden 0.75 0.48 +0.05 0.89
Amsden 0.5 0.81 +£0.07 0.78 Amsden 0.5 0.75+0.07 0.89
Cukier 0.5 118 £0.04 0.71 Cukier 0.5 1.03+0.05 0.66
Cukier 0.75 2.00+0.16 —-0.67 Cukier 0.75 1.59+0.08 0.66
Cukier 1.0 3.41+045 -3.12 Cukier 1.0 2.47+0.12 0.66

whether or not the model is fitting changes in volume fraction or
solute radius. Fig. 5 shows a comparison of the best fits obtained
from both the Cukier and Amsden models for both polymer volume
fraction and solute radius dependence. The data show that the
Amsden obstruction model, regardless of the scaling relationship
employed, provides an improved prediction of hindered diffusion
coefficients compared to the Cukier hydrodynamic model.

It might be expected that hindered diffusion in PEG/PAA IPNs
follows that predicted by models for the single components of the
IPN. A polyelectrolyte such as PAA with sufficient charge screening
from counterions, as is the case in 0.15 M PBS, can be treated as
a polymer in a good solvent with £ ~ ¢~/ scaling [22]. For the PEG
network, a study by Cheng et al. on solute diffusion in higher
molecular weight PEG solutions yielded scaling exponent values
between 0.66 and 0.97 depending on the type of solute used [35].
These results are consistent with our data that show the Amsden
model provides a good fit with scaling exponents of either & ~ qf3/4
or £ ~ ¢~ L. An inconsistency present in these results is that the
scaling exponent £ ~ ¢34 is derived from an assumption that the
polymer chains are behaving as in a good solvent while £ ~ ¢!
scaling is derived from an assumption that the polymer chains are
behaving as in a theta solvent. If both of these scaling exponents are
able to fit the data, then little information can be obtained about
the possible chain conformations in PEG/PAA IPN hydrogels. The
Amsden model is in fact sensitive to which scaling exponent is
employed, but only at much lower volume fractions of polymer
than those probed in this study. Unfortunately, it is difficult to
obtain PEG/PAA IPN hydrogels with such low volume fractions of
polymer without significantly changing a number of parameters in
the system. Given this limitation in our system, it is difficult to infer
information about chain conformation in PEG/PAA IPN hydrogels
using this model.

5. Conclusions

We have fit our diffusion data to both a hydrodynamic model
originally proposed by Cukier and to an obstruction model devel-
oped more recently by Amsden. Both the Cukier and Amsden
models rely on scaling theories to predict diffusion coefficients in
polymer solutions and networks. For the Cukier hydrodynamic
model, the hydrodynamic screening length, «~!, scaling as
k1 ~ ¢~ 112 provides the best fit to our data, although the fit is only
moderate. This is consistent with previous findings that show that
the Cukier model with k! ~ ¢~/ scaling provides a better fit than
other scaling relationships used for this model. The Amsden model
provides a very close fit to our experimental data; however, care
must be taken in extracting information regarding the proper
scaling relationships for PEG/PAA IPN hydrogels because the model
is not extremely sensitive to the scaling relationship employed over
the range of polymer volume fractions explored in this work. Since
itis difficult to obtain PEG/PAA IPN hydrogels with very low volume

fractions of polymer, it is difficult to determine the proper scaling
relationship for this system with this model. Despite this limitation,
the Amsden obstruction model is able to provide a better prediction
of both the polymer volume fraction dependence and solute radius
dependence of saccharide diffusion through PEG/PAA IPN hydro-
gels than the Cukier hydrodynamic model. This demonstrates that
despite the potentially more involved molecular level structures of
PEG/PAA IPN hydrogels, a coarse-grained model based solely on
obstruction effects is able to accurately fit both the polymer volume
fraction and solute radius dependence of normalized solute diffu-
sion coefficients observed in these IPN hydrogels.

On-going and planned small angle X-ray (SAXS) and small angle
neutron scattering (SANS) measurements will help to determine
the average size of the spaces between polymer chains in PEG/PAA
IPN hydrogels and how the sizes of these spaces scale with the
equilibrium volume fraction of polymer. Since it has been shown
that the hydrodynamic screening length and the static screening
length scale similarly with the polymer volume fraction, the scaling
relationship obtained from scattering measurements should apply
to both the Cukier and the Amsden hindered diffusion models [16].
Once the proper scaling relationship for this system is established
by experimental scattering methods, the validity and accuracy of
the hindered diffusion models presented in this work can be more
thoroughly assessed.
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